| Biology 12: Enzymes | | |---------------------|-------| | | Date: | | Name: | Date | ## **Enzyme Lab** #### **Objectives** - * Measure the effects of changes in temperature, pH, and enzyme concentration on reaction rates of an enzyme catalyzed reaction in a controlled experiment. - * Explain how environmental factors affect the rate of enzyme-catalyzed reactions. #### INTRODUCTION: What would happen to your cells if they made a poisonous chemical? You might think that they would die. In fact, your cells are always making poisonous chemicals. They do not die because your cells use enzymes to break down these poisonous chemicals into harmless substances. Enzymes are proteins that speed up the rate of reactions that would otherwise happen more slowly. The enzyme is not altered by the reaction. You have hundreds of different enzymes in each of your cells. Each of these enzymes is responsible for one particular reaction that occurs in the cell. In this lab, you will study an enzyme that is found in the cells of many living tissues. The name of the enzyme is catalase (KAT-uh-LAYSS); it speeds up a reaction which breaks down hydrogen peroxide, a toxic chemical, into 2 harmless substances—water and oxygen. The reaction is: $2 H_2O_2 \longrightarrow 2 H_2O + O_2$ This reaction is important to cells because hydrogen peroxide (H_2O_2) is produced as a byproduct of many normal cellular reactions. If the cells did not break down the hydrogen peroxide, they would be poisoned and die. In this lab, you will study the catalase found in liver cells. You will be using chicken or beef liver. It might seem strange to use dead cells to study the function of enzymes. This is possible because when a cell dies, the enzymes remain intact and active for several weeks, as long as the tissue is kept refrigerated. | lmolar HCl solution
lmolar NaOH solution
6 Test tubes
Measuring Pipette | 40 ml 3% Hydrogen peroxide
solution | Stirring rod Fresh liver, Apple, and Potato Test tube holders Ice bath Warm water bath Boiling water bath | |--|--|---| | · | | | ### PART A - Observe Normal Catalase Reaction Test this and record the reaction rate. c.) Reaction Rate ______ (0 - 5) | I TILL II ODDCI VO MOZILIMI O MINIMI D MINIMI D | |---| | 1. Place 2 ml of the 3% hydrogen peroxide solution into a clean test tube. | | Using forceps and scissors cut a small piece of liver and add it to the test tube. Push it into
the hydrogen peroxide with a stirring rod. Observe the bubbles. | | a.) What gas is being released? (consider the equation) | | Throughout this investigation you will estimate the rate of the reaction (how rapidly the solution bubbles) on a scale of 0-5 (0=no reaction, 1=slow, 5= very fast). Assume that the reaction in step 2 proceeded at a rate of "4" Recall that a reaction that absorbs heat is endothermic; a reaction that gives off heat is | | Recall that a reaction that absorbs heat is endothermic; a reaction that gives off heat is exothermic. Now, feel the temperature of the test tube with your hand. | | b.) Has it gotten warmer or colder | | c.) Is the reaction endothermic or exothermic? 3. Pour off the liquid into a second test tube. Assuming the reaction is complete. | | a.) What is this liquid composed of? | | | | | | | | peroxide to the liver remaining in the first test tub | e. | |--|--|---|----| | a.) V
b.) I | What is the reaction rate?
Is catalase reusable? E | xplain how you know. 🛪 🚖 | | | A STATE OF THE STA | والمرافقة والمرا | | | | :11 | are to at for the presence | Contain Catalase of catalase in tissues other than liver. Place 2 ml | of | | | peroxide in each of 3 cles to the tubes. As you are | ean test tubes and then add each of the three test dd each test substance, record the reaction rate (Rate of Reaction (0-5) | | | lrogen
stance | peroxide in each of 3 cles to the tubes. As you are substance Potato | ean test tubes and then add each of the three test dd each test substance, record the reaction rate (| | | lrogen
stance | peroxide in each of 3 cles to the tubes. As you are | ean test tubes and then add each of the three test dd each test substance, record the reaction rate (| | # PART C - What is the Effect of Temperature on Catalase Activity? 1. Put a piece of liver into the bottom of a clean test tube and cover it with a small amount of water. Place this test tube in a boiling water bath for 5 minutes. Remove the test tube from the hot water bath, allow it to air cool, then pour out the water. Add 2 ml of hydrogen peroxide. CAUTION: Use a test-tube holder for hot test tubes. Base_ | | a.) What is the reaction rate for the boiled liver and peroxide? | |---|---| | 3 | Put equal quantities of liver into 2 clean test tubes and 1 ml H_2O_2 into 2 other test tubes. Put one test tube of liver and one of H_2O_2 into an ice bath. Place the other set in a warm water bath (not boiling). | | | After 3 minutes, pour each tube of H_2O_2 into the corresponding tube of liver and observe the reaction | | | a.) What is the reaction rate for the cold liver/peroxide? b.) What is the reaction rate for the warm liver/peroxide? | | I | PART D - What is the Effect of pH on Catalase Activity | | 1 | . Add 2 ml hydrogen peroxide to each of $oldsymbol{3}$ clean test tubes. | | | Tube 1add odrops of HCl (acid) pH = 3 Tube 1 add odrops of NaOH (base) pH = 10 Tube 3 add 3 drops of water (neutral) pH = 7 | | | | |] | Now add liver to each of the test tubes | | (| (try to do it all at about the same time, so you can easily compare) | | | Rate of Reaction for: | | • | Acid | | , | Neutral |